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SUMMARY

The reproducibility of multivariate measurements is discussed. Reproducibility
of a second kind is defined, in which part of the variability between samples is de-
scribed by a principal components model. The use of this generalized reproducibility
is shown to give an improved precision in the pyrolysis-gas chromatography of a
Penicillium species.

INTRODUCTION

The characterization and classification of micro-organisms by chemical means
has been under investigation for some time. Reiner! showed that different bacterial
strains show different “chemical fingerprints” when subjected to pyrolysis followed
by gas chromatographic separation of the resulting volatile fragments. This work has
been continued by several workers?-3, including Reiner*. More recently, pyrolysis—gas
chromatography (Py—-GC) has been heavily critisized by Meuzelaar er al.°, mainly
because of the difficulty of obtaining reproducibility between different runs on the
same sample. Instead, Meuzelaar ez al.° advocate pyrolysis—mass spectrometry as a
preferred method for solving the problem.

There is no doubt that Py-GC shows an apparent lack of reproducibility.
Fig. 1 sbows two consecutive Py—-GC runs with the same sample of the mould Penicil-
lium brevi-compactum. The situation is not hopeless, however, if the variation betwéen

* To whom correspondence should be addressed.
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Fig. 1. Two Py-GC runs on Safnples of Penicillium brevi-compactum.

the chromatograms in different runs is to some extent systematic. The variation can
then be described by a mathematical model which allows the construction of a second
kind of reproducibility.

in this paper we report an investigation of the variability of Py-GC runs on a
single fungal strain, Penicillium brevi-compactum. We partition this variability into
one systematic part and one random part. The use of the systematic part for the
identification of new samples is discussed.

REPRODUCIBILITY OF THE FIRST AND SECOND KINDS
The traditional concept of reproducibility (R) involves measurements (y,) made on a

single variable y. The variability of y; around the mean () or some cther measure of
the central tendency is defined as the reproducibility of y (see Fig. 2)7-8:

J’k =J T & 1)
R <> a(e) @)

The measurements y, are described by the mean () and random “noise” (). The
standard deviation of the noise is related to the reproducibility (R).

] _J-_ —”-l--l—‘ ]_ y Ireproduc:bmry
12345678910
Fig. 2. The reproducibility of a single variable y is related to the variability of measurements y; around
the mean j.
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When multivariate measurements are made, two kinds of reproducibility can
be defined. The first relates to the reproducibility of each single variable independently
of all the others. This is the same as the traditional concept, and has recently been
discussed by Eshuis ez al®. The second kind relates to the predictability of one
multivariate measurement vector from the other multivariate vectors. Thus, we can

generalize eqn. (1) to
V=D + & A3)

Here @ symbolizes any mathematical model. In eqn. 1 @ is a simple constant, but we
realize that as long as @ is known to the extent that the deviations & can be calculated
for a single sample measurement y;, a measure of the reproducibility can be derived

from the size of «. ‘
In the multivariate situation y; is no more a single number but rather a vector

or array of numbers, henceforth denoted by Y; with the elements y;,, where i is the
index of the variables constituting the multivariate measurement; i = 1,2,..., M.

In Py-GC, a chromatogram which as those in Fig. 1 can be translated to a
vector of numbers Y, by, for instance, using the areas or the heights of the peaks as
variables. Thus, the chromatograms in Fig. 1 are translated to vectors with 26 elements
using the peak heights of the numbered peaks. This gives data as shown in Table L.

It can be seen that if the traditional reproducibility related to eqn. 4 is used
we have a variation around the mean for each peak of approximately 189/ S.D.

We can now ask if it is possible to find a model @ which is “batter” than the
ordinary mean, that is, a model which makes the residuals £ have a smaller variability
than 18 94. We write the multivariate model explicity as

Vie =P + & @ -
Model (1) is then

Yin =Y + & A (&)

It has been shown'® that it is indeed possible to find a form of @ which generally
gives smaller residuals £ than model (1) and (5). This model, the principal components
model'! or the factor model'?, henceforth called the PCF model, applies to the
reproducibility situation discussed here provided that the individual variables i show
some kind of correlation with each other.

This corresponds to the model

4 .
Yu =i + %‘1 Bia O + Eix ©)

Here y, still is the average of variable i and ¢ the deviations between model and
observations (y;;). The products 3,0, express the correlation structure betweeil the
variables over the group of samples (kK = i,2,...,N).

Model (6) has properties which are very desirable in the present context.
Firstly, it is generally applicable in the reproducibility situation as the samples, by
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definition, are closely similar'®*3, Secondly, the number of terms 4 can be estimated
from the data’ .Thus we can test if model (5) [i.e., model (6) with 4 -=.0] or model (6) =
is better. if we find the latter, it is routine computation to calculate the parameters § -
and 8 which makes the model best approximate the data in the least-squares sensa'®/5.
Thirdly, model {6} has an appealing geometric mterpretatxon wlnch will be discussed
below in terms of an artificial example. ,

The S.D. of the residuals g,., egn. 7, gzves a measure of the p:ecxsmn t.e., the .
variability of the data around the model &: : .

1z R _
So=[2 = egzl(M—A)(N—A—'l)i‘ S

i=1 a=1

Here M and N are the number of variables and samples, respectively.

IDENTIFICATION OF A NEW SAMPLE

With the traditional reproducibility model (egn. 5}, the identification of a2 new
sample simply involves the comparison of the mew sample vector Y* (having the
clements y;*) with the mean values 7, estimated from earlier samples. - :

The residuals &* are calculated as

&% =y — 7 ' | Gy

In other words, each variable is compared with the typical value as in Fig. 2_ If all
elements fall inside the earlier estimated intervals of variation for the corresponding
variables, the new sample is concluded to be identified as being of the présent type.
The identification of a new sample according to the reproducibility of the
second kind (eqgn. 6) is slightly more involved®. Firstly, the mean values are sub-
tracted as before giving the initial residuals, now dencted by Z;*: TR

ZFr=y*—J: , o f(?_‘}

However, when it has been found that Z, have systematic‘étructure’, i.e., when it.has
been found that egn. 6 describes the earlier data with 4 > 1, Z;*isto be dxvxded m.to
the systematic part and the random part. This involves a rcgressxon- o

Zf= 5 £ Bt o ,'”*T@ﬂxm-
a=t S o ’

Here B,, are the parameters estimated earlier in eqn. 6. The coefficients £, correspond
to the parameters 8 in eqn. 6. The ¢, values for the new sample are calculated so as to
minimize the final residual &%, Thus the systematxc part of Z* is mtzmated as Et 53 .
and the random part as &;*.

If now g,, are within the earlier cs&mated range (as measm'ed by their S.D.,
eqn. 11), we conclude that the new sample “fits” the same group as the eax:her samplé:
the new sample is identified: S

s=[Zea—n] o  fG§
= | .
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Graphically, this identification is simple to understand and is discussed further below
with an artificial example.

ARTIFICIAL EXAMPLE

Consider five runs as shown in Fig. 3. The variability according to model (5)
is large and no apparent reproducibility is seen. When the mean “chromatogram”
(M in Fig. 3) is subtracted from the five runs we obtain instead the picture shown in
Fig. 4. Suddenly the five runs look very similar; we immediately realize that the
remainders are described by a coefficient € times “chromatogram” number 1 in Fig. 4.

L I

= < =3 &~ T

I

Fig. 3. Five artificial gaschromatograms with three peaks. M is their average. T is the chromatogram
of a “‘test”” sample which is to be compared with chromatograms 1-5.
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Fig. 4. Same artificial gas chromatograms as in Fig. 3 but with the average chromatogram M sub-
tracted.

We have shown graphically that each chromatogram in Fig. 3 is described as (B is
chromatogram 1 in Fig. 4):

Y. = M + BO, , (12)

A “test” sample which introduced after the chromatograms M and B have been
“estimated” from the data (7 in Fig. 4) is immediately seen to “fit” the group by
first subtracting M.

We see that in this artificial example the traditional reproducibility according
to model (5) is very bad. The reproducibility of the second kind according to model (6)
is “perfect”, a result which is baflling when looking at Fig. 3.

In practice the situation is, of course, less perfect. The residuals never become
zero when the optimal number of terms (4) are used in the PCF model (6). However,
the residuals & usually become smaller than those using model (5), that is, some
variation between the chromatograms is usually systematic and the information
contained in the data is better utilized by using model (6); the precision becomes
better by using a more general model.
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Whether this decrease in ¢ is statistically significant, however, must be checked: =
by a statistical procedure. We use a very stringent procxdure, cross-vahcatxen, detaxls T

of which will appear elsewhere!?.

Graphical representation )

There are other ways of representing the artificial data in Fig. 3. One xﬂustratwe
way is to construct a space with one orthogonal axis for each variable. We cail this
space M-space {(measurement space). In the artificial example we thus get the three-
dimensional space shown in Fig. 5. In this space each sample vector is represented as -
a point. We see that “samples” all lie along a straight line, corresponding to eqn. 6
with 4 = 1.

Fig. 5. Three dimensional M-space constructed by using the three “pezks™ of samp!s in Fig. 3as
coordinates x, y and z.

The calculation of the coefficient 8 in egn. 6 corresponds to the determination
of the direction of the line in the M-space. The coefiicient 8, descnbe the posmon of
samples &k along this line.

The identification of a new sample simply corresponds to seeing if the sample
point” falls close to the line in M-space {the asterisk in Fig. 5). The distance between
the sample point and the line is directly measured as the S.D. of the tesxduals Eeky

eqgn. 11.
REAL EXAMPLE: PY-GC OF PENICILLIUM BREVI-COMPACTUM

Samples and chemical analysis

Penicillium brevi-compactum Dierckx (CBS 210.28) was grown in Oxoid malt
extract broth for 5 days on a rotary shaker (100 rpm) at 22°. Very few conidia were
formed during the incubation. The mycelium was harvested by filtration, freeze dried}:
ground in a mortar and stored in glass tubes in an exsiccator at room temperature. -

Pyrolysis investigations were carried out on ca. 9.5-mg samples of the fungi.
A Pye GCD with a flame-ionization detector and a Pye Pyrolyzer No. 12556 and -
12557 was used. As the samples were powdery, the coil methodinan 80 mm X 2 mm
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TABLE 1I

RESIDUAL (¢g) SD.s FOR MODEL (6) WITH 4 =2 AND (1) ALL VARIABRLES AND (2) ALL
VARIABLES EXCEPT 2, 5, 6, 16 AND 24

The last row shows the values of f;; and S;. in eqn. 6 for case (2). The original data y,; were normalised to
Y (y) = 10.

Parameter  Total Variable (i)

1 2 3 4 5 6 7 8 9 10 11 12
sAD 0.63 0.50 1.0 049 051 1.0 10 047 034 024 038 022 0.72
5 0.48 0.53 043 064 043 026 021 034 021 062
Bu —0.10 0.02 -0.11 —0.25 —0.25 —0.28 —0.27 —0.28 —-0.06
Bia 0.36 0.41 0.33 0.15 019 006 008 006 —0.36

I.D. quartz tube was used. A new ferromagnetic wire and a cieaned quartz tube were
used for each sample. A pyrolysis time of 10 sec at S10° was employed throughout.
Chromatography was carried out using a 3.0 m X 4 mm LD. glass column packed
with 109% Carbowax 20 M on 100-120-mesh Chromosorb W AW DMCS. The
temperature was programmed from 70 to 150° at a rate of 4°/min, with an initial
hold for 6 min, a final hold for 30 min and then 10 min at 170°. The carrier gas
(nitrogen) flow-rate was 40 ml/min at 25°, with hydrogen and air flow-rates of 50 and
500 ml/min, respectively. The injector temperature was 170° and the detector tempera-
ture 200°. Ten samples were analysed over a time period of 30 days.

The 10 resulting gas chromatograms were digitized by using the heights of
26 peaks identifiable in all chromatograms as the values of 26 variables. Each sample
data vector was normalized to a sum of 1000 over the 26 peak values. The resulting
data are shown in Table 1.

Data analysis

First the data were scaled, subtracting from each variable its mean and then
dividing each variable by its S.D. (bottom of Table I). This gave each variable a zero
mean and the same initial weight. Second, the scaled data matrix was subjected to a
principal components analysis (PCA). Cross-validation' showed that two product
terms 36 were needed to describe the correlation structure (4 = 2 in eqn. 6).

The standard deviations of the residuals g;, for each variable i showed that
variables 2, 5, 6, 15 and 24 did not participate in the PCF model (sce Table I1). Hence,
these variables were deleted and a new PC analysis was made on the reduced data
matrix. The resulting residual S.D.s for each variable are shown in Table 11 together
with the values of the parameters 8;, and §,,. These are also plotted against each other
in Fig. 6.

Table 11I shows the values of 6, and 6,, for the 10 samples (k¢ = 1.2,...,10)
and the residual S.D. of ¢;; for each sample. The total residual S.D. is 0.45 (S, eqn. 7).

The plot shown in Fig. 6 gives an indication of the grouping of the variables.
Thus, variables having similar §; and 3, values fall close to each other in this plot, and
these variables show a similar behaviour over the investigated data set.

We can see a clear clustering of the variables, indicating connections between
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13 14 15 16 17 18 19 20 21 22 23 24 25 26
0.60 0.69 0.95 0.13 017 016 043 066 034 072 067 10 0.46 0.57
0.59 0.71 017 023 0I5 043 068 035 0683 065 0.48 0.59
—0.05 —0.22 —0.27 —0.27 —0.28 —025 023 0.23 005 023 —0.21 025
—0.37 -—-0.07 —0.11 —0.11 —0.08 —0.12 —004 —006 —036 —0.06 —0.24 0.03
&
: ©

8,

Fig. 6. Plot of 8, against f,, for the variables remaining in analysis (ii) when variables 2,5,6,15and
24 have been deleted.

the following groups: (1) 1,3,4; (2) 7-11; (3) 14, 16-19; (4) 12, 13, 22; and (5)
20, 21, 23, 26.

A simple representation such as that shown in Fig. 5 for the artificial data set
is, of course, more difficult in the present case involving 26 dimensions. We can,
however, display different projections of the 26-dimensional M-space down on .
various planes, but this is more interesting when several types of moulds are analysed.
Therefore, we show such projections in the following paper. ‘

In summary, the data analysis shows that indeed about 559 of the variation
between the 10 chromatograms is systematic. Thus, the reproducibility of the second
kind gives about twice as good “precision” as the traditional reproducibility.
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TABLE Iil

VALUES OF 4, AND 6,, (EQN. 6) FOR RUNS 1-10 FOR THE CASE WHEN VARIABLES
2, 5,6, 15 AND 24 HAVE BEEN EXCLUDED

The last columns show the data (3) S.D. and residual (¢;) S.D. for each run.

k 0, 6, 5.D.(y)  S.D.(s)
i —5.16 2.19 1.2 0.47
2 —2.44 —2.59 087 0.46
3 3.97 099  0.38 0.48
4 —2.65 —3.96 1.0 0.34
5 1.03 1.85 054 0.33
6 3.02 2.61 1.0 0.58
7 —3.46 122 098 0.64
3 4.23 —2.00 1.1 0.45
9 3.50 —129 086 0.43

10 —2.05 098  0.66 0.52

DISCUSSION

The fact that multivariate measurements ofien display correlations between
the variables shows that the definition of new kind of reproducibility is needed. The
use of the traditional reproducibility relating to the variation of each variable around
its mean value results in the unnecessary loss of information and precision. In addition
to the primary classification aspects, a PCF analysis as discussed in this paper gives
interesting information about the relevance of the variables and the grouping of
variables. ’

In the following paper we discuss the issue of real interest in connection with
the Py—~GC analysis of fungi, namely the identification of several strains and species.
The generalization from the one-group analysis in this paper to several-group analyses
is straightforward. Each fungus is described by a separate PCF model (eqn. 6).

New moulds are then classified according to which of the PCF models they
fit best. The gain in precision obtained by using a reproducibility based on PCF
models instead of the ordinary mean value will be shown to sometimes be of critical

importance.
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