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SUMMARY 

The reproducibility of multivariate measurements is discussed. Reproducibility 
of a second kind is defined, in which part of the variability between samples is de- 
scribed by a principal components model. The use of this generalized reproducibility 
is shown to give an improved precision in the pyrolysis-gas chromatography of a 
Penicitiium species. 

INTRODUCTION 

The characterization and classification of micro-organisms by chemical means 
has been under investigation for some time. Reinerl showed that different bacterial 
strains show different “chemical fingerprints” &hen subjected to pyrolysis followed 
by gas chromatographic separation of the resulting volatile fragments_ This work has 
been continued by several workers2*a, _ including Reine?. More recently, pyrolysis-gas 
chromatography (Fy-GC) has been heavily critisized by Meuzelaar et a!.‘, mainly 
because of the difficulty of obtaining reproducibility between different runs on the 
same sample. Instead, Meuzelaar eC ~1.’ advocate pyrolysis-mass spectrometry as a 
preferred method for solving the problem. 

There is no doubt that Py-GC shows an apparent lack of reproducibility. 
Fig. 1 shows two consecutive Py-GC runs with the same sample of the mould Penicil- 
hm breui-compacturn. The situation is not hopzless, however, if the variation between 

l To whom correspondence should be addressed. 
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-I- 
Fig. 1. TWO Py-GC ~UIIS OR samples of Penicillilcm brevi-contpacrum. 

the chromatograms in different runs is to some extent systematic. The variation can 
then be described by a mathematical model which allows the construction of a second 
kind of reproducibility. 

in this paper we report an investigation of the variability of Py-GC runs on a 
single fungal strain, Penicillium brevi-compactum. We partition this variability- into 
one systematic part and one random part. The use of the systematic part for the 
identification of new samples is discussed. 

REPRODUCIBILITY OF THE FIRST AND SECOND KINDS 

The traditional concept of reproducibility (R) involves measurements (y,) made on a 
single variable y. The variability of y, around the mean (j) or some other measure of 
the central tendency is defined as the reproducibility of y (see Fig. 2)‘~~: 

J’k = 7 + &k (I) 

R e G(E) (2) 

The measurements y, are described by the mean (J) and random “noise” (E). The 
stand.ard deviation of the noise is related to the reproducibility (R). 

reproducibility 

12345673910 k 

Fig. 2. The reproducibility of a single variable y is related to the variability of measurements yk around 
the mean p. 
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When multivariate measurements are made, two kinds of reproducibility can 
be defined. The frrst relates to the reproducibility of each single variable independently 
of all the others. This is the same as the traditional concept, and has recently been 
discussed by Eshuis et al. 9. The second kind relates to the predictability of one 
multivariate measurement vector from the other multivariate vectors. Thus, we can 
generalize eqn. (I) to 

y, = CD + &k (3) 

Here @ symbolizes any mathematical model. In eqn. 1 @ is a simple constant, but we 
realize that as long as @ is known to the extent that the deviations E can be calculated 
for a single sample measurement y,, a measure of the reproducibility can be derived 
from the size of E. 

In the multivariate situation yii is no more a single number but rather ‘a vector 
or array of numbers, henceforth denoted by Y, with the elements yiL, where i is the 
index of the variables constituting the multivariate measurement; i = 1,2,. . ., M. 

In Py-GC, a chromatogram which as those in Fig. I can be translated to a 
vector of numbers Yk by, for instance, using the areas or the heights of the peaks as 
variables. Thus, the chromatograms in Fig. 1 are translated to vectors with 26 elements 
using the peak heights of the numbered peaks. This gives data as shown in Table I. 

It can be seen that if the traditional reproducibility related to eqn. 4 is used 
we have a variation around the mean for each peak of approximately 18 o? SD. 

We can now ask if it is possible to find a model @ which is “better” than the 
ordinary mean, that is, a model which makes the residuals E have a smaller variability 
than 18 %. We write the multivariate model explicity as 

Yik = @ + Elk (4) 

Model (1) is then 

It has been shownlo that it is indeed possible to find a form of @ which generally 
gives smaller residuals E than model (I) and (5): This model, the principal components 
modelrr or the factor model”, henceforth called the PCF model, applies to the 
reproducibility situation discussed here provided that the individual variables i show 
some kind of correlation with each other. 

This corresponds to the model 

Here fI still is the average of variable i and E the deviations between model and 
observations (yik). The products /lioeaL express the correlation structure between the 
variables over the group of samples (k = 1,2,. . .,N). 

Model (6) has properties which are very desirable in the present context. 
Firstly, it is generally applicable in the reproducibility situation ‘as the samples, by 
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definition, are. Closely sin&r ‘**a. Secxxidly~ the.number of terms R &2q ti est&&ed 
from the d&P *Thus we can test if model (5) [- r-e_, mod$ ()-%+h:A -ti-.Ql or xnodeL(6) -2 

is better, If we find the fatter, it is routine comput+ion to c2Ictite the parametefi fi 
ad 6 4&h m&es the model best approximate the da& in the Ieast-sqm E~~~J?_ 
Thirdly, model (6) has 2x3 zppe&ng geometric interpret&ion which-wiiI be discqs+ 
below in terms of 2n 2rtiGcid example. . . 

The S-D. of the residuafs sib eqn. 7. g&s a measure of the ptecision,_i_e.., the 
variability of ffie d&.2 around the model CD,: ._ 

S,, = [ i!l =aE q&M - A) flv - A - I>3 "' . . (6 
- - 

Here M 2nd N are the number of variables and samples, respectively. 

LDENTLFICATION OF A NEW SAMPLE 

With the traditional reproducibility model (eqn. 5), the identikatiore of a new 
sample simply involves the comparison of the new ztmple vector Y* (having $e 
elements yi*) with the mean v2hxs Ft estimated from eartier sampk _ 

The i-e&hi& cl* are cakufated as 

In other words, each variable is compared with the typic& value 2s in Fig_ 2- E &Ll 
elements fall inside the earlier estimated &en&s of ~2riation for the corresponding 
vapiabks, the new sample is concluded to be identified as being of the prkent type_ 

The identication of 2 nc* sampEe 2ccording to the reproducibility of the 
second kind (eqn. 6) is slightiy more invokd I0 Firstly, the -mean values are s& _ 
tracted as before giving the initid residu&, how denoted by &*: . 

However, when it has been found that 2, have systematic‘stru~tzti, i.e., when k&s 
been found that eqn. 6 describes the earlier d2t2 with A b I, Z,* is to be divided into 
the systematic part 2nd the random pxt. This i~&&es a .regressions 

Here & are the parameters estim2ted artier in eqn. 6: TEe coeEcie_nts tC~correspond 
to the parameters 6 in eqa. 6. The r, values far th& new s2mple 2re c&u_Med so 2s to 
minimize the fin& residual EP. Thus the systematic p+ of &*-is est@xx&‘;is’~&~ @i. _ 

and the random part as q*. 
If now &i, are titin the eaPEier Mim2ted range (2s nieaured by t&e% S.ti., 

eqn. 1 I), we conclude that the new sample “fits~ the same group &s the qxrli$r S&PI&$;- 
the new sample is identified: 
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Graphically, this identification is simple to understand and is discussed further below 
with an artificial example. 

ARTIFICIAL EXAMPLE 

Consider five runs as shown in Fig. 3. The variability according to model (5) 
is large and no apparent reproducibility is seen. When the mean “chromatogram” 

(M in Fig. 3) is subtracted from the five runs we obtain instead the picture shown in 
Fig. 4. Suddenly the five runs look very similar; we immediately real& that the 
remainders are described by a coefficient I? times “chromatogram” number 1 in Fig. 4. 

I 2 3 4 5 n r 

Fig. 3. Five artificial gasctiomatograms with three peaks. M is their average. T is the chromatogram 
of a “test” sample which is to be compared with chromatograms l-5 ’ 

e=f 05 0 -a5 -I 025 

Fig. 4. Same artificial gas chromatograms as in Fig. 3 but with the average chromatogram M sub- 
trac:ed. 

We have shown graphically that each chromatogram in Fig. 3 is described as (B is 
chromatogram 1 in Fig. 4) : 

Yk = M + Be, (12) 

A “test” sample which introduced after the chromatograms M and I3 have been 
“estimated” from the data (T in Fig. 4) is immediately seen to “fit” the group by 
first subtracting M_ 

We see that in this artificial example the traditional reproducibility according 
to model (5) is very bad. The reproducibility of the second kind according to model (6) 
is “perfect”, a result which is baffling when looking at Fig. 3. 

In practice the situation is, of course, less perfect. The residuals never become 
zero when the optimal number of terms (A) are used in the PCF model (6). However, 
the residuals E usually become smaller than those using model (5), that is, some 
variation between the chromatograms 
contained in the data is better utilized 
better by using a more general model. 

is usually systematic and the information 
by using model (6); the precision becomes 
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Whether this decrease in E is statistic.aEy significant, however, ~I,EX be checked. 
by a statistical procedure. We use a very stringent procedure, truss-validation, details 
of which will appear elsewherels. 

There are other ways of representing the artificial data in Fig. 3. One i&&rat& 
way is to coostruct a space with one orthogonal axis for each variable. We calf this 
space M-space (measurement space). In the artificial exampfe we thus get the th_ree- 
dimensional space shown in Fig. 5. In this space each sample vector is represented as 
a point. We see that “samples” ali lie along a strtight line, corresponding to qn- 6 
with A = 1. 

.-- 

Fig. 5. Three dimensional M-space constructed by using the three “peak? of sampk in Fig. 3 as 
coordinates x, y and z. 

The calculation of the coeB?cient 6 in eqn. 6 corresponds to the determination 
of the direction of the line in the M-space. The coefficient 8, describe the position of 
samples k along this line. -1 

The identification of a new sample simply corresponds to seeing if the “sample 
point” falfs close to the line in M-space @he aster&k&x Fig_ s). The distzxqce between 
the sample point and the line is directly measured as the SD. of the residuak %, 
eqn. 11. _- 

REAL EXAMPLE: PY-GC OF PENICILLIUM BREVI-COMPACTUM 

Penicillium brevi-compacturn Die&x (CBS 210.28) was grown in Oxoid malt 
extract broth for 5 days on a rotary shaker-(EOO rpm) at 22”. Very few conidia were 
formed during the incubation. The myceiium was harvest& by filtration, freeze driedi: 
ground in a mortar and stored in glass tubes in arr-exsiccator at room temperature. 

Pyrolysis inves@&ions were carried out on CCI. OS-mg samples of the fungi. 
A Pye GCD wi& a tlame-ionization detmor and 3 Pye Pyrolyzer ?$A I2556 and 
I2557 was used. As the samples were powdery, the coil methodf6 in an 80 mm x 2 mm 
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TABLE II 

RESIDUAL (E) S.D.s FOR MODEL (6) WITH A = 2 AND (1) ALL VARIABLES AND (2) ALL 
VARIABLES EXCEPT 2, 5,6, 16 AND 24 

The last row shows the values of pII and & in eqn. 6 for case (2). The original data ylL were normalised to 
s‘(y) = 1.0. 

Parameter Total Variable (i) 

J 2 .3 4 5 6 7 8 9 JO II I2 

SP 0.63 0.50 1.0 0.49 0.51 1.0 1.0 0.47 0.34 0.24 0.38 0.22 0.72 
S,(l) 0.48 0.53 0.43 0.64 0.43 0.26 0.21 0.34 0.21 0.62 

-0.10 0.02 -0.11 -0.25 -0.25 -0.28 -0.27 -0.28 -0.06 
0.36 0.41 0.33 0.15 0.19 0.06 0.08 0.06 -0.36 

I.D. quartz tube was used. A new ferromagnetic wire and a cleaned quartz tube were 
used for each sample. A pyroIysis time of 10 set at 510’ was empIoyed throughout. 
Chromatography was carried out using a 3.0 m x 4 mm I.D..giass column packed 
with 10% Carbowax 20 M on lOO-12O-mesh Chromosorb W AW DMCS. The 
temperature was programmed from 70 to 150” at a rate of 4”/min, with an initial 
hold for 6 min, a final hold for 30 min and then 10 min at 170”. The carrier gas 
(nitrogen) flow-rate was 40 mi/min at 25”, with hydrogen and air flow-rates of 50 and 
500 mi/min, respectively. The injector temperature was 170” and the detector tempera- 
ture 200”. Ten samples were analysed over a time period of 30 days. 

The 10 resulting gas chromatograms were digitized by using the heights of 
26 peaks identifiable in all chromatograms as the values of 26 variables. Each sample 
data vector was normalized to a sum of 100 over the 26 peak values. The resulting 
data are shown in Table I. 

Bata analysis 
First the data were scaled, subtracting from each variable its mean and then 

dividing each variable by its S-D. (bottom of Table I). This gave each variable a zero 
mean and the same initial weight. Second, the scaled data matrix was subjected to a 
principal components analysis (PCA). Cross-vaiidationlJ showed that two product 
terms @ were needed to describe the correlation structure (A = 2 in eqn. 6). 

The standard deviations of the residuals Elk for each variable i showed that 
variables 2, 5, 6, 15 and 24 did not participate in the PCF model (see Table II). Hence, 
these variables were deleted and a new PC analysis was made on the reduced data 
matrix. The resulting residual S.D.s for each variable are shown in Table II together 
with the values of the parameters PiI and fii2. These are also plotted against each other 
in Fig. 6. 

Table III shows the values of elk and oZ1, for the 10 samples (k = 1,2, _ _ .,lO) 
and the residual S-D. of &ik for each sample. The total residual S.D. is 0.45 (S,,, eqn. 7). 

The plot shown in Fig. 6 gives an indication of the grouping of the variables. 
Thus, variables having similar /3x and & values fall close to each other in this plot, and 
these variables show a similar behaviour over the investigated data set. 

We can see a clear clustering of the variables, indicating connections between 
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13 14 IS 16 17 18 19 20 .?Z 22 23 24 25 26 

0.60 0.69 0.95 0.13 0.17 0.16 0.43 0.66 0.34 0.72 0.67 I.0 0.46 0.57 
0.59 0.71 0.17 023 0.15 0.43 0.68 0.35 0.63 0.65 0.4s 0.59 

-0.05 -0.22 -0.27 -0.27 -0.28 -0.25 0.23 0.23 -0.05 0.23 -0.21 0.25 
-0.37 -0.07 -0.11 -0.11 -0.08 -0.12 -0.04 -0.06 -0.36 -0.06 -0.24 0.03 

- 

a 8 7 

la 

a 911 

Fig. 6. Plot of & against /Ii1 for the variables remaining in an&sis (ii) when variab& 2..5,6,15 and 
24 have heen deleted. 

the following groups: (1) 1,3,4; (2) 7-l 1; (3) 14, 16-19; (4) 12, 13, 22; and (5) 
20, 21, 23, 26. 

A simple representation such as that shown in Fig. 5 for the artificial data set 
is, of course, more dithcult in the present case involving 26 dimensions. We can, 
however, display different projections of the 2&dimensional M-space down on / 
various planes, but this is more interesting when several types of moulds are analysed. 
Therefore, we show such projections in the following paper. 

IQ summary, the data analysis shows that indeed about 55% of the variation 
between the LO chromatograms is systematic. Thus, the reproducibility of the second 
kind gives about twice as good “precision” as the traditional reproducibility- 
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TABLE Ii1 

VALUES OF 81, AND 0, (EQN. 6) FOR RUNS l-10 FOR THE CASE WHEN VARIABLES 
2,5,6,15 AND 24 HAVE BEEN EXCLUDED 

The last columns show the data b) S.D. and residual &) SD. for each run. 
--- 
k e1 02 S.D. (~1 S.D. (c) 

1 -5.16 2.19 1.2 0.47 
2 -2.44 -2.59 0.87 0.46 
3 3.97 0.99 0.88 0.48 
4 -2.65 -3.96 1.0 0.34 
5 1.03 1.85 0.54 0.33 
6 3.02 2.61 1.0 0.58 
7 -3.46 1.22 0.98 0.64 
8 4.23 -2.00 1.1 0.45 
9 3.50 -1.29 0.86 0.43 

10 -2.05 0.98 0.66 0.52 

DISCUSSION 

The fact that multivariate measurements often display c&relations between 
the variables shows that the definition of new kind of reproducibility is needed. The 
use of the traditional reproducibility relating to the variation of each variable around 
its mean value results in the unnecessary loss of information and precision. In addition 
to the primary classification aspects, a PCF analysis as discussed in this paper gives 
interesting information about the relevance of the variables and the grouping of 
variables. 

In the following paper we discuss the issue of real interest in connection with 
the Py-GC analysis of fungi, namely the identification of several strains and species. 
The generalization from the one-group analysis in this paper to several-group analyses 
is straightforward. Each fungus is described by a separate PCF model (eqn. 6). 

New moulds are then classified according to which of the PCF models they 
fit best. The gain in precision obtained by usin g a reproducibility bzxsed on PCF 
models instead of the ordinary mean value will be shown to sometimes he of critical 
importance. 
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